Psychology Cognition Structure, Theories of Cognitive Development & Problem-Solving
To view other notes of Psychology Click Here.
The Structure of Cognition
Cognition, or thinking, involves mental activities such as understanding, problem solving, and decision making. Cognition also makes creativity possible.
The Building Blocks of Cognition
When humans think, they manipulate mental representations of objects, actions, events, and ideas. Humans commonly use mental representations such as concepts, prototypes, and cognitive schemas.
Concepts
A concept is a mental category that groups similar objects, events, qualities, or actions. Concepts summarize information, enabling humans to think quickly.
Example: The concept “fish” includes specific creatures, such as an eel, a goldfish, a shark, and a flying fish.
Prototypes
A prototype is a typical example of a concept. Humans use prototypes to decide whether a particular instance of something belongs to a concept.
Example: Goldfish and eels are both fish, but most people will agree that a goldfish is a fish more quickly than they will agree that an eel is a fish. A goldfish fits the “fish” prototype better than an eel does.
Cognitive Schemas
Cognitive schemas are mental models of different aspects of the world. They contain knowledge, beliefs, assumptions, associations, and expectations.
Example: People may have a schema about New York that includes information they’ve learned about New York in school, their memories of New York, things people have told them about New York, information from movies and books about New York, what they assume to be true about New York, and so on.
Theories of Cognitive Development
Cognitive development refers to the change in children’s patterns of thinking as they grow older.
Jean Piaget’s Stage Theory
The scientist best known for research on cognitive development is Jean Piaget, who proposed that children’s thinking goes through a set series of four major stages. Piaget believed that children’s cognitive skills unfold naturally as they mature and explore their environment.
Lev Vygotsky’s Theory of Sociocultural Influences
Psychologist Lev Vygotsky believed that children’s sociocultural environment plays an important role in how they develop cognitively. In Vygotsky’s view, the acquisition of language is a crucial part of cognitive development. After children acquire language, they don’t just go through a set series of stages. Rather, their cognitive development depends on interactions with adults, cultural norms, and their environmental circumstances.
Private Speech
Vygotsky pointed out that children use language to control their own behavior. After children acquire language skills and learn the rules of their culture, they start to engage in private speech. They first talk to themselves out loud, and then, as they grow older, silently, giving themselves instructions about how to behave.
Current Research on Cognitive Development
Current research indicates that children have complex cognitive abilities at much younger ages than Piaget suggested. As early as four months of age, infants appear to understand basic laws of physics. For example, a four-month-old infant can recognize that solid objects cannot pass through other solid objects and that objects roll down slopes instead of rolling up. At five months of age, infants can recognize the correct answers to addition and subtraction problems involving small numbers. These observations have led some researchers to speculate that humans are born with some basic cognitive abilities.
Critics argue that researchers who find these results are overinterpreting the behavior of the infants they study.
Problem-Solving
Problem-solving is the active effort people make to achieve a goal that cannot be easily attained.
Types of Problems
Three common categories of problems include inducing structure, arranging, and transformation.
Inducing Structure
Some problems involve finding relationships between elements.
Example: “Pineapple is to fruit as cabbage is to ___.” In this analogy problem, the answer, “vegetable,” requires people to figure out the relationship between “pineapple” and “fruit” and apply a similar relationship to “cabbage.”
Arranging
Other problems involve arranging elements in a way that fulfills certain criteria.
Example: The answer to the problem “Arrange the letters in LEPAP to make the name of a fruit” is “APPLE.”
Transformation
Other problems involve making a series of changes to achieve a specific goal, a process called transformation.
Example: A familiar riddle describes a situation in which a man has to take his fox, his chicken, and his tub of grain across a river in a boat. The boat will hold only him and two of his possessions at any one time. He can’t leave the fox and the chicken on the riverbank by themselves because the fox will eat the chicken, and he can’t leave the chicken with the grain because the chicken will eat the grain. He also can’t take the fox and the chicken in the boat together because the fox will eat the chicken when he’s occupied with rowing the boat. The same goes for the chicken and the grain. How will he get all three across? First he takes the fox and the grain across. He leaves the fox on the opposite bank and takes the grain back with him. He then leaves the grain on the bank and takes the chicken across. He leaves the chicken on the opposite bank and takes the fox back with him to retrieve the grain.
Approaches to Problem Solving
There are many strategies for solving problems, included trial and error, algorithms, deductive reasoning, inductive reasoning, heuristics, dialectical reasoning, forming subgoals, using similar problems, and changing the way the problem is represented.
Trial and Error
Trial and error involves trying out different solutions until one works. This type of strategy is practical only when the number of possible solutions is relatively small.
Example: It’s dark, and a man is trying to figure out which button on the dashboard of his newly rented car switches on the headlights. He might press all the available buttons until he finds the right one.
Algorithms
Algorithms are step-by-step procedures that are guaranteed to achieve a particular goal.
Example: A chocolate chip cookie recipe is an algorithm for baking chocolate chip cookies.
Deductive Reasoning
Deductive reasoning is the process by which a particular conclusion is drawn from a set of general premises or statements. The conclusion has to be true if the premises are true.
Example: If the premises “All birds have wings” and “A penguin is a bird” are true, then the conclusion “A penguin has wings” must also be true.
Inductive Reasoning
Inductive reasoning is the process by which a general conclusion is drawn from examples. In this case, the conclusion is likely, but not guaranteed, to be true.
Example: Given the premise “All the butterflies Fred has ever seen have wingspans of less than two inches,” Fred might conclude, “All butterflies have wingspans of less than two inches.”
Heuristics
A heuristic is a general rule of thumb that may lead to a correct solution but doesn’t guarantee one.
Example: A useful heuristic for finishing a timed exam might be “Do the easy questions first.”
Dialectical Reasoning
Dialectical reasoning is the process of going back and forth between opposing points of view in order to come up with a satisfactory solution.
Example: A student might use dialectical reasoning when she considers the pros and cons of choosing psychology as her college major.
Forming Subgoals
Forming subgoals involves coming up with intermediate steps to solve a problem. This is a way of simplifying a problem.
Example: Susan is asked to solve the analogy problem “Prison is to inmate as hospital is to ____.” Susan’s subgoal could be to figure out the relationship between “prison” and “inmate.” Once she achieves this subgoal, she can easily find the answer, “patient.”
Using Similar Problems
A problem is often easier to solve if it can be compared to a similar problem.
Example: Mike has to give his two-year-old daughter a bath, but she resists because she is afraid of the water. Mike remembers that he convinced her to get in the kiddie pool last week by letting her take her large plastic dinosaur toy with her for “protection.” He gives her the toy again, and she agrees to get in the tub.
Changing the Way a Problem Is Represented
A problem may be easier to solve if it is represented in a different form.
Example: If hundreds of guests at a banquet are trying to figure out where they are supposed to sit, written instructions might not be easy to follow. A seating chart, however, makes the seating arrangement easy to understand.
Obstacles to Effective Problem-Solving
Researchers have described many obstacles that prevent people from solving problems effectively. These obstacles include irrelevant information, functional fixedness, mental set, and making assumptions.
Irrelevant Information
Focusing on irrelevant information hinders problem-solving.
Example: A familiar children’s riddle goes like this: As I was going to St. Ives, I met a man with seven wives. Every wife had seven sacks, every sack had seven cats, every cat had seven kits. How many were going to St. Ives? People may think of this as a complicated math problem, but in reality, only one person, the “I,” is headed to St. Ives. The seven wives and their respective entourages are headed the other way.
Functional Fixedness
Functional fixedness is the tendency to think only of an object’s most common use in solving a problem.
Example: Rachel’s car breaks down while she is driving through the desert. She is terribly thirsty. She finds several soda bottles in the trunk but no bottle opener. She doesn’t think of using the car key to open the bottles because of functional fixedness.
Mental Set
A mental set is a tendency to use only those solutions that have worked in the past.
Example: When Matt’s flashlight hasn’t worked in the past, he’s just shaken it to get it to work again. One day when it doesn’t come on, he shakes it, but it still doesn’t work. He would be subject to mental set if he keeps shaking it without checking whether it needs new batteries.
Making Assumptions
Making assumptions about constraints that don’t exist prevent people from solving problems effectively.
Example: Another familiar riddle goes as follows: A father and his son are driving on a highway and get into a terrible accident. The father dies, and the boy is rushed to the hospital with major injuries. When he gets to the hospital, a surgeon rushes in to help the boy but stops and exclaims, “I can’t operate on this boy—he’s my son!” How can this be? If people have a hard time answering, they may be making a false assumption. The surgeon is the boy’s mother.
